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Abstract

Atrazine (ATZ), the second most commonly used herbicide in the United States, is an endocrine 

disrupting chemical linked to cancer and a common drinking water contaminant. This study 

further investigates ATZ-related developmental toxicity by testing the following hypotheses in 

zebrafish: the effects of embryonic ATZ exposure are dependent on timing of exposure; embryonic 

ATZ exposure alters brain development and function; and embryonic ATZ exposure changes 

protein abundance in carcinogenesis-related pathways. After exposing embryos to 0, 0.3, 3, or 30 

parts per billion (ppb) ATZ, we monitored the expression of cytochrome P450 family 17 subfamily 

A member 1 (cyp17a1), glyoxalase I (glo1), ring finger protein 14 (rnf14), salt inducible kinase 2 

(sik2), tetratricopeptide domain 3 (ttc3), and tumor protein D52 like 1 (tpd52l1) at multiple 

embryonic time points to determine normal expression and if ATZ exposure altered expression. 

Only cyp17a1 had normal dynamic expression, but ttc3 and tpd52l1 had ATZ-related expression 

changes before 72 hours. Larvae exposed to 0.3 ppb ATZ had increased brain length, while larvae 

exposed to 30 ppb ATZ were hypoactive. Proteomic analysis identified altered protein abundance 

in pathways related to cellular function, neurodevelopment, and genital-tract cancer. The results 

indicate embryonic ATZ toxicity involves interactions of multiple pathways.
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1. Introduction

Exposure to environmental stressors, including environmental toxicants, during the 

developmental period can cause immediate and long lasting health effects[1]. Multiple 

characteristics of developing organisms, including limited biotransformation of xenobiotics, 

lack of a blood-brain-barrier, immature immune system, and increased metabolic rate may 

contribute to greater toxicity during development[2]. As a consequence, toxic effects appear 

at much lower exposure concentrations in developing organisms compared to the 

concentration of toxicant required to cause adverse effects in adults. In addition, 

developmental plasticity is thought to be significant and critical, as perturbations in 

physiologic pathways during development can result in non- or maladaptive phenotypes of 

disease[3]. Certain time points in the embryonic period represent critical windows for gene-

environment interactions and heightened susceptibility to extrinsic and intrinsic stressors 

that result in phenotypic alterations[4].

Endocrine disrupting chemicals (EDCs) represent a broad class of chemicals that interfere 

with the action of hormones. Exposure to EDCs can disrupt normal physiology and 

homeostasis throughout development and the life course of an organism[5, 6], though 

organisms appear to have the greatest sensitivity to EDCs during the developmental 

period[7]. Hormones are critical for the normal growth and development of many organs and 

tissues, from reproductive organs to the brain. Any disruptions of the hormonal milieu has 

the potential to cause irrevocable changes in tissue and organ structure or function[8]. In 

addition to reproductive dysfunction[9], developmental EDC exposure is associated with 

cancer[10], alterations in innate immune function[11], obesity[12], and altered cognition, 

including learning and memory[13]. Furthermore, low-dose exposure to EDCs can have 

significant health implications, as EDCs often have nonmonotonic, U-shaped, inverted U-

shaped, or other non-traditional dose response curves[8, 14]. EDCs include chemicals found 

in plastics and resins, plasticizers, pharmaceuticals, and pesticides[6, 15].

Atrazine (2-chloro-4-ethylamino-6-isopropylamino-s-triazine; ATZ), is a triazine herbicide 

used to control broadleaf and select grassy weeds. As of 2012, it was estimated that between 

64 and 74 million pounds was used annually in the United States, making ATZ the second 
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most commonly used agricultural pesticide[16]. Post-application rainfall causes ATZ to 

leach from fields into ground and surface water where it can persist in the environment[17–

20]. The heavy use combined with the estimated 146 day half-life of ATZ in groundwater 

results in ATZ being the most common pesticide detected in agricultural stream water and 

both agricultural and urban groundwater sources[21]. Due to the presence of ATZ in public 

water sources, the US Environmental Protection Agency (EPA) regulates the concentration 

of ATZ in drinking water with a Maximum Contaminant Level of 3 parts per billion (ppb; 

μg/L)[22]; however, in 2003, the European Union effectively banned ATZ due to concerns 

over groundwater contamination and environmental persistence[23].

ATZ is a significant environmental toxicant because it is linked to endocrine disruption, 

cancer, reproductive disorders, birth defects, and altered nervous system function[24]. 

Epidemiological studies link ATZ exposure to decreased semen quality in Midwestern 

men[25], increased risk of breast cancer for women living in areas with medium or high 

exposure[26]; menstrual cycle irregularities[27], and increased prevalence of small-for-

gestational-age infants[28]. ATZ exposure in amphibians is associated with abnormal 

metamorphosis and feminization[29–32], and in rodents, ATZ disrupts the hypothalamic-

pituitary-gonadal axis[33–37]. The central nervous system is also a target of ATZ, with ATZ 

exposure altering dopaminergic and serotonergic neurotransmission as well as 

neurobehavior[38–43]. Although evidence suggests ATZ is an EDC, the mechanism of 

action is still under investigation. ATZ does not appear to have intrinsic estrogenic activity 

and does not bind to the estrogen receptor[44]. Instead, ATZ seems to alter intracellular 

signaling through the inhibition of type 4 cyclic nucleotide phosphodiesterases (PDE4), 

resulting in an increase in cyclic adenosine monophosphate (cAMP) and decreased 

expression of steroidogenic proteins[45–48]. Additionally, ATZ appears to modify the 

epigenome. ATZ alters microRNA levels[49] and inhibits the activity and expression of 

DNA methyltransferases, resulting in decreased global DNA methylation[50]. These 

epigenetic modifications further provide a mechanism of altered gene expression.

The zebrafish (Danio rerio) biomedical model has many advantages in toxicological 

research, including small size, large clutches, easy husbandry, well-characterized and rapid 

ex vivo development, short generational interval, a sequenced genome, and conserved 

metabolic pathways[51–55]. A previous study from our laboratory characterized the effects 

of embryonic, environmentally relevant, low-dose ATZ exposure on the growth and 

development and the transcriptome of larval zebrafish and found alterations in head length 

and disruptions of gene pathways associated with neuroendocrine system development and 

function, reproductive system development and function, and carcinogenesis[56]. This study 

further investigates the effects of embryonic ATZ exposure by evaluating how gene 

expression normally changes over a developmental time course and how ATZ exposure 

alters gene expression at specific developmental time points, how ATZ effects brain 

development and behavior, and how ATZ changes the proteome in larval zebrafish. We 

expect that embryonic ATZ exposure dynamically alters the expression of select genes 

during critical windows for toxicity. To test this hypothesis, six genes were chosen from the 

previous study that had altered gene expression at 72 hours post fertilization (hpf; the end of 

embryogenesis) as a result of embryonic ATZ exposure[56]. The genes are cytochrome P450 

family 17, subfamily A, member 1 (cyp17a1), glyoxalase I (glo1), ring finger protein 14 
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(rnf14), salt inducible kinase 2 (sik2), tetratricopeptide domain 3 (ttc3), and tumor protein 

D52 like 1 (tpd52l1). Each of the genes had altered expression in at least two of the ATZ 

treatments (3 ppb and 30 ppb) and are associated with cancer (cyp17a1, glo1, rnf14, sik2, 
ttc3 and tpd52l1), the central nervous system (cyp17a1, glo1, sik2, and ttc3), and/or the 

endocrine system (cyp17a1, glo1, rnf14, sik2, ttc3, and tpd52l1)[56]. The normal expression 

of these genes was monitored throughout embryogenesis and the effects of embryonic ATZ 

exposure evaluated at each developmental time point (24, 36, 48, 60, and 72 hpf). We also 

hypothesize that embryonic ATZ exposure alters the neurodevelopment of larval zebrafish. 

We measured brain length and behavioral responses to a visual motor response test to 

evaluate brain morphology and function. Finally, we performed a proteomic analysis to 

identify differences in protein levels resulting from embryonic ATZ exposure. We 

hypothesized that pathways associated with cancer, neurological disease, reproductive 

system disease, and cell cycle and proliferation, which were previously altered on 

transcriptomic analysis, would also have altered protein levels. By performing a proteomic 

analysis we aim to link changes in protein levels to behavioral alterations, changes in brain 

morphology, and changes in gene expression throughout development.

2. Materials and Methods

2.1 Zebrafish husbandry and treatment

Embryos were obtained from a breeding colony of wild-type AB strain laboratory zebrafish 

(Danio rerio). Adult zebrafish are maintained in a Z-Mod System (Aquatic Habitats, 

Apopka, FL) on a 14:10 light-dark cycle. Water is maintained at 28°C, the pH at 7.0–7.3, 

and salinity at 470–550 μS conductivity. Fish and aquaria are monitored twice daily and fed 

a mixture of brine shrimp (Artemia franciscana; Artemia International LLC., Fairview, 

Texas), Golden Pearls 500–800 μm (Artemia International LLC., Fairview, Texas), and 

Zeigler adult zebrafish food (Zeigler Bros Inc., Gardners, PA). Adult zebrafish were bred in 

spawning tanks according to established protocols[57, 58] and embryos collected 

immediately after the breeding interval, approximately at the 4–8 cell stage of embryonic 

development. The embryos were rinsed, randomly sorted into treatment groups, exposed to 0 

(filtered aquaria water), 0.3, 3, or 30 ppb (μg/L) ATZ and incubated at 28.5°C. The ATZ 

solutions were prepared from aliquots of a stock solution of technical grade atrazine (98.1% 

purity) (CAS 1912-24-9; Chem Service, West Chester, PA) as previously described[43, 56]. 

ATZ treatment concentrations were confirmed with an US EPA approved immunoassay kit 

(Abraxis Atrazine ELISA Kit, Warminster, PA) as previously described [59, 60]. Unless 

collected beforehand, larvae were rinsed at 72 hours post fertilization (hpf) with aquaria 

water to end ATZ exposure and then maintained in clean aquaria water until collected. All 

protocols were approved by the Purdue University Animal Care and Use Committee and all 

fish treated humanely with regard to prevention and alleviation of suffering.

2.2 Transcript analysis

Genes previously identified as being altered by ATZ exposure at 72 hpf were evaluated for 

normal changes in expression through development and time specific alterations in gene 

expression resulting from ATZ exposure. For the developmental time course, each replicate 

consisted of 5 petri dishes containing 50 embryos treated with filtered aquaria water. One of 
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the 5 petri dishes was then collected at 24, 36, 48, 60, and 72 hpf. For the atrazine exposure, 

50 embryos per petri dish were exposed to 0, 0.3, 3, or 30 ppb ATZ. A replicate consisted of 

a petri dish of embryos from each treatment collected at each of the 24, 36, 48, and 60 hpf 

time points. For both the time course and atrazine exposures a total of 6 biological replicates 

(n = 6) were collected, with each biological replicate representing embryos from a different 

breeding clutch. During collection, embryos were euthanized via anesthetic overdose with 

0.4 mg/ml tricaine-S (ethyl m-amino benzoate methanesulfonate; Western Chemical Inc., 

Ferndale, WA), homogenized in Trizol (Life Technologies, Carlsbad, CA), flash frozen in 

liquid nitrogen, and stored at −80°C until RNA isolation. RNA was isolated with the 

RNEasy Mini Kit (Qiagen, Germantown, MD) and cDNA was synthesized using the 

Superscript First Strand Synthesis Kit (Life Technologies, Carlsbad, CA) following 

established protocols[61]. The relative expression of cyp17a1, glo1, rnf14, sik2, ttc3, and 

tpd52l1 was determined via quantitative PCR (qPCR) following similar methods as 

described previously[56, 57, 62, 63] and MIQE guidelines[64]. Forward and reverse primers 

for the target genes (Integrated DNA Technologies, Coralville, IA) were designed using the 

Primer3 Website (Table 1) and checked using NCBI Primer-BLAST [65]. As in previous 

studies [43, 56] β-actin was chosen as a reference gene due to consistent expression that did 

not vary across atrazine exposures. The expression of β-actin was not altered between 24, 

36, 48, and 60 hpf (data not shown). qPCR analysis was performed using the SSoAdvanced 

Universal SYBR Green Supermix (Bio-Rad, Hercules, CA) on a CFX Connect Real-Time 

PCR Detection System (Bio-Rad, Hercules, CA) with a standard protocol[63]. Melting and 

standard dilution curves and no template controls were evaluated to ensure appropriate 

efficiency (100±10%)and specificity. Experimental samples were run in triplicate to provide 

technical replicates. Gene expression was normalized to β-actin (gene of interest/β-actin). A 

one-way ANOVA on SAS 94 software (SAS Institute Inc., Cary, NC) was used to evaluate 

for differences between groups. When the outcome was statistically significant, a Fisher’s 

Least Significant Difference (LSD) post hoc test at α = 0.05 was performed to determine 

groups significantly different from either the control (72 hpf time point for the time course 

and 0 ppb treatment for ATZ exposures).

2.3 Brain measurement analysis

To determine if brain development was altered by ATZ exposure, 50 embryos per treatment 

were exposed to 0, 0.3, 3, or 30 ppb ATZ. At 72 hpf, larvae were euthanized via anesthetic 

overdose and the brain lengths, defined as the distance from the most rostral aspect of the 

brain to the brainstem spinal cord junction[66], of 20 randomly selected larvae (considered 

subsamples) were measured per treatment per replicate. A total of six biological replicates (n 

= 6) were imaged via light microscopy using a Nikon SMZ1500 dissecting microscope with 

a Nikon Digital Sight DS-fil camera. NIS Elements imaging software (Nikon Instruments 

Inc., Melville, NY). A one-way ANOVA was used to analyze differences among treatments, 

and a Fisher’s LSD test at α = 0.05 was used when a significant ANOVA was observed.

2.4 Larval Visual Motor Response Test

To evaluate if developmental ATZ exposure was associated with behavioral alterations, 

larval zebrafish behavior during a visual motor response (VMR) test was monitored at 120 

hpf. This is the earliest time in which zebrafish have robust, testable, locomotion when 
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reared at 28.5°C[67]. A total of 5 biological replicates (n = 5) were completed. For each 

replicate, 50 embryos per treatment were exposed to 0, 0.3, 3, or 30 ppb ATZ and 24 larvae 

from each treatment (considered subsamples) were placed into separate wells in a 96-well 

plate with 0.5 mL of filtered aquaria water. Grossly malformed or dead larvae were 

excluded. Treatments were balanced between columns to reduce location based test artifact. 

The loaded 96-well plate was incubated at 28°C for 10 minutes before being transferred to 

the Noldus DanioVision Observation Chamber (Noldus Information Technology, 

Wageningen, Netherlands). The Noldus Temperature Control Unit maintained the 

observation chamber water temperature at 28°C throughout the course of the experiment. 

Following a 10 minute dark acclimation period, the Noldus White Light Routine was used to 

test the VMR by exposing the larvae to series of 10 minute alternating dark and light periods 

for a total of 50 minutes[68]. All behavioral experiments were performed 11am-1pm to 

minimize circadian variability in movement. The infrared movement traces were recorded at 

a rate of 25 frames per second with a Basler GenICam acA 1300–60gm camera and 

analyzed with the Noldus EthoVision 11.5 software. Tracks were smoothed via a minimum 

distanced moved profile set to >0.2 mm and data for movement endpoints such as total 

distance moved, velocity, time spent moving, turn-angle, angular velocity, meander, and 

turning direction were collected. An ANOVA was used to analyze differences among 

treatments and a Fisher’s LSD test at α = 0.05 was used when a significant ANOVA was 

observed.

2.5 Proteomics

To determine if embryonic ATZ exposure results in altered protein levels, 50 embryos per 

treatment were exposed to 0, 0.3, 3, or 30 ppb ATZ. At 120 hpf, larvae were euthanized via 

hypothermic shock and 30 randomly selected larvae from each treatment per replicate were 

pooled in a 1.5 mL microcentrifuge tube, rinsed in phosphate buffered saline (PBS), flash 

frozen in liquid nitrogen, and stored at −80°C until further processing. A total of 6 biological 

replicates were collected. Samples were collected at 120 hpf to minimize the presence of 

yolk proteins. For proteomic analysis, 100 μl of 100 mM ammonium bicarbonate (ABC) was 

added to the zebrafish before transferring the samples into reinforced 2 ml tubes containing 

2.8 mm ceramic (zirconium oxide) beads (Cayman Chemical, Ann Arbor, MI). The tubes 

were loaded into a Precellys 24 homogenizer (Bertin Instruments, Montigny-le-Bretonneux, 

France), and samples were homogenized at 6500 rpm in 3 cycles of 20 seconds each. Protein 

concentration was determined using a bicinchoninic acid (BCA) assay, and 50 μg of protein 

was isolated for digestion using an acetone precipitation. After removing acetone, samples 

were reduced and alkylated, and sequence grade Lys-C/Trypsin (Promega, Madison, WI) 

was used to enzymatically digest the extracted protein. All digestions were carried out in the 

Barocycler NEP2320 at 50°C under 20,000 psi for 1 hour. Digested samples were cleaned 

over C18 spin columns (Nest Group, Southborough, MA) and dried in a vacuum centrifuge. 

Resulting pellets were resuspended in 97% purified H2O/3% acetonitrile (ACN)/0.1% 

formic acid (FA).

For liquid chromatography/mass spectrometry (LC/MS), samples were analyzed using the 

Dionex UltiMate 3000 RSLC Nano System coupled to the Q Exactive™ HF Hybrid 

Quadrupole-Orbitrap Mass Spectrometer (Thermo Scientific, Waltham, MA). Peptides were 
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loaded onto a trap column (20 μm × 350 mm) and washed using a flow rate of 5 μl/minute 

with 98% purified water/2% ACN/0.01% FA. The trap column was switched in-line with the 

analytical column after 5 minutes, and peptides were separated using a reverse phase 

Acclaim PepMap RSLC C18 (75 μm × 15 cm) analytical column using a 120 minute method 

at a flow rate of 300 nl/minute. Mobile phase A consisted of 0.01% FA in water while 

mobile phase B consisted of 0.01 % FA in 80% ACN. The linear gradient started at 5% B 

and reached 30% B in 80 minutes, 45% B in 91 minutes, and 100% B in 93 minutes. The 

column was held at 100% B for the next 5 minutes before being brought back to 5% B and 

held for 20 minutes. Sample was injected into the QE HF through the Nanospray Flex™ Ion 

Source fitted with an emission tip from Thermo Scientific. Data acquisition was performed 

monitoring the top 20 precursors at 120,000 resolution with an injection time of 100 

milliseconds. For quality assurance and quality control, instrument evaluations and 

calibrations are run weekly and a standard E. coli digest (Waters, Milford, MA) is used 

routinely to check instrument performance.

The files from the MS were processed using the MaxQuant computational proteomics 

platform version 1.5.5.1 (Max-Planck-Gesellschaft, München, Germany)[69]. The peak list 

generated was searched against the Danio rerio sequences from UNIPROT retrieved on 

10/25/2016 and a common contaminants database (MaxQuant, Max-Planck-Gesellschaft, 

München, Germany). The following settings were used for MaxQuant: default Orbitrap 

parameters, minimum peptides length of seven amino-acid, data was analyzed with ‘Label-

free quantification’ (LFQ) checked and the ‘Match between runs’ interval set to 1 min, 

protein FDR was set to 1%, enzyme trypsin and LysC allowing for two missed cleavage and 

three modifications per peptide, fixed modifications were Iodoethanol(C), variable 

modifications were set to Acetyl (Protein N-term) and Oxidation (M). Additional 

information on peptide and protein results are in the supplementary data.

An in-house script was used to perform the following steps on the MaxQuant results: 

removed all the common contaminant proteins, log transformed [log2(x)] the LFQ intensity 

values, input the missing values using the average values of the other two samples when just 

one sample was missing and use half of the lowest intensity when all three samples were 

missing in one group and present in all three samples in the other group. The statistical 

analyses were performed in R® (www.cran.r-project.org). An ANOVA was performed on 

the LFQ intensities and only proteins with p-value < 0.05 were used in further analyses. 

Tukey’s post hoc test identified differences between treatment groups. The list of proteins 

was imported into Ingenuity Pathway Analysis (IPA; Qiagen, Germantown, MD) and 

matched to the human orthologs of the zebrafish proteins for gene ontology and molecular 

pathway analysis.

3. Results

3.1 Gene expression through development and after ATZ exposure

The normal expression of target genes cyp17a1, glo1, rnf14, sik2, ttc3, and tpd52l1 was 

determined throughout a developmental time course (24, 36, 48, 60, and 72 hpf). These 

genes were chosen based on identification of altered expression at 72 hpf in a previous study 

[56] and their association with cancer, the central nervous system, and/or the endocrine 
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system. The effect of ATZ exposure during embryogenesis was evaluated by comparing gene 

expression across treatments at 24, 36, 48, and 60 hpf.

The developmental time course for cyp17a1 showed significant alterations in expression, 

with significantly decreased relative expression of cyp17a1 at 24 hpf and 60 hpf (p=0.0001; 

Figure 1A) compared to 72 hpf. However, following atrazine exposure, there were no 

significant changes at 24, 36, 48, or 60 hpf (p=0.3892, p=0.9207, p=0.6050, and p=0.2709, 

respectively; Figure S1 A–D).

There were no significant differences in the relative expression of glo1 during the 

developmental time course (p=0.2491; Figure 1B). Exposure to ATZ did not significantly 

alter relative gene expression at 24, 36, 48, or 60 hpf (p=0.4299, p=0.3210, p=0.3952, and 

p=0.6788, respectively; Figure S2A–D).

During the developmental time course, no significant differences in the relative expression 

of rnf14 were observed (p=0.2431; Figure 1C). Similarly, ATZ exposure did not elicit 

significant changes in relative gene expression at 24, 36, 48, or 60 hpf (p=0.4726, p=0.3905, 

p=0.8840, and p=0.1657, respectively; Figure S3A–D).

The relative expression of sik2 was not significantly altered during the developmental time 

course (p=0.0711; Figure 1D). There were no statistically significant changes in the relative 

expression of sik2 following ATZ exposure at 24, 36, 48, and 60 hpf (p=0.0596, p=0.4104, 

p=0.2148, and p=0.2822, respectively; Figure S4A–D).

The relative expression of ttc3 did not significantly change throughout the developmental 

time course (p=0.3893; Figure 1E). Although no significant differences in relative gene 

expression were observed at 24, 36, or 48 hpf (p=0.2589, p=0.2369, and p=0.2949; Figure 

2A–C), at 60 hpf, the relative expression of ttc3 was increased in the 3 ppb treatment group 

as compared to the 0 ppb controls (p=0.0099; Figure 2D).

Throughout the developmental time course, relative tpd52l1expression did not significantly 

change (p=0.0714; Figure 1F). In the ATZ treated groups, there were no significant 

differences in relative gene expression at 24 and 48 hpf (p=0.2360, p=0.3040; Figure 3A,C). 

However, ATZ exposure did alter the relative expression of tpd52l1 at 36 and 60 hpf. At 36 

hpf the 0.3 and 3 ppb treatment groups had a significant increase in relative gene expression 

compared to the control (p=0.0253; Figure 3B). At 60 hpf, there was a decrease in relative 

expression for all ATZ treatments (0.3, 3, and 30 ppb) compared to the controls (p=0.0246; 

Figure 3D).

3.2 Brain morphology

Brain length measurements were taken at 72 hpf. The 0.3 ppb treatment group had a 

significantly longer brain as compared to the 0 ppb controls (p=0.0027, Figure 4A–B). The 3 

ppb and 30 ppb brain lengths were not significantly different from the controls.
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3.3 Larval Behavior

In the VMR test, the 30 ppb treatment group was significantly different from the 0 ppb 

controls with respect to distance moved (p=0.0199), velocity (p = 0.0197), and time spent 

moving (p = 0.0123) (Figure 5A–C). The 30 ppb treatment had decreased distance moved, 

decreased velocity, and spent less time moving compared to the controls. There was no 

difference in other locomotor parameters including heading, turn angle, angular velocity, 

meander, or rotational direction (p=0.567, p=0.8384, p=0.8384, p=0.8568, p=0.4418, and 

p=0.1798; Figure S5).

3.4 Proteomics

Out of a total of 1690 proteins identified, 28 proteins had significant (p < 0.05) LFQ 

intensity values. Of the 28 proteins, 21 had significantly altered abundance in at least one 

treatment group compared to the controls according to Tukey post hoc comparisons (Table 

2). Three proteins had significant differences in abundance between the 0 ppb and 0.3 ppb 

treatment groups, 4 proteins had significant differences in abundance between the 0 ppb and 

3 ppb groups, and 16 proteins had significant differences in abundance between the 0 ppb 

and 30 ppb treatments. Comparing the 0.3 ppb treatment to the controls, 67% of altered 

proteins were upregulated and 33% were downregulated, with PSMB4 having the largest 

log2 fold change of 0.5755. In the 3 ppb treatment group, 50% of proteins were upregulated 

and 50% downregulated compared to the controls, with HP1BP3 having the largest log2 fold 

change of −1.4097. In the 30 ppb treatment, 50% of proteins were upregulated and 50% 

downregulated compared to controls, with MYH7B having the largest log2 fold change 

increase of 0.9816 and ATP5MD having the largest log2 fold change decrease of −1.2348. 

FTMT and PFN2 abundance was altered in both the 3 ppb and 30 ppb treatments compared 

to controls.

Pathway analysis was performed on all 21 identified proteins to elucidate pathways altered 

by ATZ exposure. It should be noted that IPA creates pathways based on human orthologs of 

zebrafish proteins. The list of proteins was enriched for transforming growth factor beta 1 

(TGFB1), peoniflorin, gonadotropin-releasing hormone (GnRH) analog, L-3,4-

dihydroxyphenylalanine (levodopa; L-Dopa), and prostaglandin J2 as top upstream 

regulators (Table 3). The top diseases and biological functions associated with the protein 

list included cardiovascular disease, organismal injury and abnormalities, and cancer (Table 

4). The most enriched physiological system development and function pathways included 

cardiovascular system development and function, embryonic development, and nervous 

system development and function (Table 5). Fifteen proteins from the list were associated 

with urogenital and genital tract cancers, including prostate cancer (Figure 6). Networks 

associated with cellular compromise, cell death and survival, and neurological disease were 

also enriched (Figure S6).

4. Discussion

During the embryonic period, the expression of certain genes is dynamically regulated to 

control normal development and differentiation[70]. Of the 6 selected genes with expression 

changes at 72hpf, only cyp17a1 was dynamically expressed earlier during the developmental 
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time course under normal conditions, with lowered expression at 24 and 60 hpf. cyp17a1 is a 

critical enzyme in steroid hormone biosynthesis, having both 17α-hydroxylase and 17,20-

lyase activities. When cyp17a1 favors 17α-hydroxylase activity, the steroidogenic pathway 

favors the production of glucocorticoids; however, when the 17,20-lyase activity 

predominates the pathway favors the creation of androgens and estrogens[71, 72]. 

Glucocorticoids and sex hormones are both important for regulating development, with 

altered sex hormone levels causing reproductive abnormalities and altered cortisol levels 

causing impaired growth, altered somitogenesis, and embryonic malformations [73–75]. 

Although we identified cyp17a1 as a dynamically regulated gene during zebrafish 

development, embryonic exposure to environmentally relevant levels of the herbicide ATZ 

did not alter the relative gene expression of cyp17a1 at 24, 36, 48, or 60 hpf. In a previous 

study, cyp17a1 expression was altered in all three ATZ exposure at 72 hpf, suggesting 72 hpf 

is a critical time point in ATZ toxicity[56].

Developmental exposure to ATZ did, however, selectively disrupt the relative gene 

expression of ttc3 and tpd52l1 before 72 hpf. ttc3 codes for an E3 ubiquitin-protein ligase 

involved in the negative regulation of cell proliferation through a mechanism of 

ubiquitination and increased proteasomal degradation of the serine-threonine protein kinase, 

AKT1[76, 77]. ttc3 is also linked to Down Syndrome[78], and increased expression is 

associated with inhibition of neuronal differentiation and decreased neurite formation 

associated with abnormal actin polymerization and altered Golgi organization[79, 80]. In our 

study, the relative expression of ttc3 was increased compared to controls in the 3 ppb ATZ 

exposure group at 60 hpf. At 72 hpf, the expression of ttc3 was upregulated at both 3 and 30 

ppb[56], indicating that developmental ATZ exposure has nonmonotonic, but stimulatory 

effects on the relative expression of ttc3 at 60–72 hpf. tpd52l1 codes for a protein with a 

coiled-coil domain that was first identified associated with human breast carcinoma[81] and 

is implicated in cell proliferation[82] and calcium signaling[83], as well as in the regulation 

of apoptosis signal-regulating kinase 1 (ASK1) induced apoptosis[84]. In our study, the 

relative expression of tpd52l1 was altered by developmental exposure to ATZ. The 

upregulation at 36 hpf followed by down relation at 60 hpf suggests that the effect of ATZ 

on tpd52l1 expression is time sensitive. Interestingly, at 72 hpf, tpd52l1 was again 

upregulated in the 3 and 30 ppb ATZ treatment groups[56]. The nonmonotonic changes in 

relative expression of ttc3 and tpd52l1 combined with the dynamic up- and downregulation 

suggests compensation in expression to maintain normal homeostatic conditions.

The relative expression of the remaining genes (glo1, rnf14, and sik2) was not altered either 

in the developmental time course or after developmental ATZ exposure at the time points 

evaluated. However, in our previous study glo1, rnf14, and sik2 were upregulated in the 3 

and 30 ppb ATZ groups at 72 hpf[56]. The lack of earlier alterations in gene expression 

suggests that 72 hpf represents a critical time point for these genes in developmental ATZ 

toxicity. It is also possible that other overlapping pathways are disrupted at specific time 

points, leading to an adaptive response though up- and downregulation of associated 

pathways that is observable at 72 hpf[85].

Developmental ATZ toxicity is a result of the dynamic changes in the global transcriptome. 

Therefore, it is important to note that although we chose to investigate the effect of ATZ on 
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the relative expression of 6 genes (cyp17a1, glo1, rnf14, sik2, ttc3, and tpd52l1) throughout 

a developmental time course, in reality, developmental ATZ exposure also effects the 

expression of hundreds of other genes as previously identified via transcriptomic 

analysis[56]. Thus, by evaluating the relative expression of a subset of genes previously 

linked to cancer, the central nervous system, and the endocrine system, we did not seek to 

establish a mechanism of toxicity, but rather to characterize normal expression through a 

developmental time course and identify the critical time points for developmental ATZ 

toxicity. Moreover, the ATZ related disruption of epigenetic mechanisms[49, 50] provides a 

basis to explain why ATZ seems not to consistently target a single processes within a 

cell[86], as transcriptomic and epigenetic alterations can compound after developmental 

exposure to toxicants[87, 88].

We also sought to characterize the effects of altered gene expression on the nervous system 

and hypothesized that embryonic ATZ exposure would alter normal neurodevelopment. This 

hypothesis is based on evidence suggesting developmental ATZ exposure alters 

transcriptomic pathways associated with neuroendocrine system function and neurological 

disease in zebrafish larvae, and on the previous finding of altered head lengths in 72 hpf 

larvae with embryonic exposure to ATZ. In Weber et al. (2013), larvae exposed to 0.3, 3, and 

30 ppb ATZ had significantly increased head lengths compared to control larvae. To evaluate 

neurodevelopment we measured the brain length, as brain length has been shown to be 

altered in postnatal mice with prenatal nicotine exposure[89], in zebrafish embryos with 

early exposure to cyclosporine[90], and as a result of altered wingless-related integration site 

(wnt) signaling[91], suggesting altered brain length as an endpoint in evaluating 

developmental neurotoxicity. In our study, only larvae with exposure to 0.3 ppb ATZ had 

significantly larger brains when compared to controls at 72 hpf. The lack of significant brain 

length changes in the 3 and 30 ppb ATZ treatment groups could suggest that either the brain 

is proportionally smaller than head, which would indicate impaired brain development or 

suggest activation of compensatory pathways at higher exposures[14]. We did not measure 

head lengths in our larvae and are thus unable to determine if the brains of the 3 and 30 ppb 

groups are proportionally smaller. However, the increased brain size of the 0.3 ppb group 

does suggest that low dose ATZ exposure during embryogenesis perturbs normal 

neurodevelopment.

We further hypothesized that developmental ATZ exposure would alter neurologic function. 

We used the VMR behavioral assay to determine if changes in gene expression and altered 

brain morphology could be linked to behavioral alterations. The VMR is a broad test of 

neurologic and locomotor function and behavioral differences in larvae can be a result of 

altered neurological signaling or structural defects[92, 93]. It is therefore possible that both 

alterations in gene expression and brain development contributed to the altered VMR test 

results in our study. Hypoactivity, characterized by decreased distance moved, decreased 

velocity, and decreased time spent moving, was observed in the 30 ppb treatment group, our 

highest developmental exposure. Interestingly, Liu et al (2016) performed a similar 

experiment with developmental ATZ exposures of 30, 100, and 300 ppb ATZ, and in a 

similar locomotor assay found decreased free swimming distance in the 100 and 300 ppb 

treatments but not the 30ppb treatment[94]. Experimental conditions were different between 

our study and Liu et al (2016). In their study, ATZ concentrations were made in 0.01% 
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dimethyl sulfoxide (DMSO) while our ATZ was prepared in filtered aquaria water. Similarly, 

the length of the experiment and light settings were different between experiments, and our 

sample size was larger, with 120 total individual subsamples (n=5, 24 subsamples per 

treatment per replicate) compared to 24 (n=4 with 6 subsamples per treatment per replicate). 

It is possible that the increased power associated with a larger sample size and the 

differences in experimental protocols account for the differences in results. Behavioral 

alterations have also been observed in C57BL/6 mice with gestational and lactational 

exposure to ATZ. Juvenile offspring of dams exposed to 1.4 mg/kg/day ATZ had altered 

performance on forced swim and marble burying tests and were hyperactive in an open field 

test[41]. Although the exposures are difficult to compare, these results provide additional 

support for ATZ related behavioral changes.

The proteome after developmental ATZ exposure was also evaluated to determine if changes 

in gene expression were translated into altered protein abundance. The pathways identified 

by IPA are centered around organism and organ development, cardiovascular disease, 

connective tissue disorders, and cancer. It should be cautioned that small data sets, such as in 

this study, are often limited to and biased towards broad, categorical results based on 

assigned gene ontology data[95]. Additionally, although there are no overlap between genes 

found altered at 72 hpf in our previous study[56] and in the current list of altered proteins, 

the pathways identified are complementary. The lack of overlap may be due in part to the 

difference in sample collection time, with transcriptomic evaluation occurring at 72 hpf, but 

proteomic evaluation occurring at 120 hpf to avoid the overwhelming presence of yolk 

proteins. It is likely that proteomic evaluation at 120 hpf is catching downstream changes in 

protein abundance that result from transcriptomic alterations at 72 hpf and are related to 

adverse health outcomes previously associated with atrazine toxicity in studies by our 

laboratory and others [37, 40, 41, 43, 50, 56, 60, 96–100].

The pathways altered on proteomic analysis are related to development and cellular function 

and maintenance. Proteins that were altered after ATZ exposure include those associated 

with ATP binding, the proteasome complex, heterochromatin and nucleic acid binding, 

regulation of apoptosis, and neurodevelopment. Many of these processes are associated with 

cell cycle progression and thus potentially carcinogenesis. The human orthologs of zebrafish 

proteins Myh7bb and Ckma both bind to ATP in skeletal muscle and therefore have roles in 

both energy management and musculoskeletal development[101, 102]. Creatine kinase (CK) 

normally converts ATP to phosphocreatine in a reversible reaction. Altered CK abundance 

has been linked to cancer as dysregulated cellular ATP handling can lead to abnormal 

regulation of mitosis and cell division[103]. Atp5md, an ATP synthase membrane subunit, is 

associated with mitochondrial ATP synthase and thus is also associated with energy 

production and management[104]. Psmb4 and Psmb7 are both proteosomal subunits and are 

involved in the removal of unwanted proteins. Proteasomes are highly conserved, multi-

subunit complexes that traditionally have a role in the degradation of ubiquitin-tagged 

proteins[105]. Proteasomes have also been non-canonically implicated in the regulation of 

chromatin structure and function, in that proteasomes can act as canonical proteases but also 

as protein chaperones to alter the initiation of transcription and the modification of 

chromatin[106]. Hp1bp3 and Srsf2a have roles in heterochromatin and nucleic acid biding 

respectively. Hp1bp3 is a binding protein of heterochromatin protein 1 (Hp1) and is related 
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to the linker histone H1 family, a group of proteins that bind to nucleosomes and interact 

with nucleosomal DNA[107]. Srsf2a has been provisionally identified in zebrafish, but 

human orthologs for the srsf2a gene have yet to be identified. In general, serine/arginine-rich 

splicing factors are involved in both alternative and constitutive splicing of pre-

mRNAs[108]. Altered abundance of these proteins suggests a possible epigenetic component 

to developmental ATZ exposure, as altered expression of genes that regulate DNA 

accessibility or post-transcriptionally modify RNA could have far reaching effects on gene 

expression. Another protein of interest is Casp3a. Casp3a is an executioner caspase involved 

in apoptosis; however, caspase 3 is also implicated in tissue differentiation and 

neurodevelopment in mammals[109]. In addition to Casp3a, Ckm, Myh7bb, and Pfn2l are 

also associated with neuritogenesis and Ckm, Myh7bb, and Pfn2l are linked to dendritic 

growth and neuron morphology[110–112]. Finally, FTMT, an enzyme with ferroxidase 

activity and a role in iron metabolism, is also associated with Friedreich ataxia, restless leg 

syndrome, and Alzheimer’s disease[113]. Alterations in these proteins could suggest a 

possible mechanism for altered neurodevelopment or later-life neurodegeneration.

Although there are no previous reports of global proteomic alterations in zebrafish after 

developmental ATZ exposure, livers from adult female zebrafish with 14 day exposure to 

either 10 or 1000 ppb ATZ had 7 proteins with altered abundance after ATZ exposure and 

the proteins were associated with cellular stress, oncogenesis, lipid metabolism, and protein 

transport [114]. This suggests that acute and developmental ATZ exposures are associated 

with carcinogenesis and disruptions of cellular signaling pathways. Our results are also in 

accordance with proteomic changes in other species observed after ATZ exposure. For 

example, gonads from Xenopus laevis tadpoles exposed to 100 ppb ATZ had altered protein 

pathways associated with p53 signaling, apoptosis, tight junctions, and amino acid 

metabolism, and lipid metabolism[115]. Similarly, the liver proteome in 1-year-old 

largemouth bass (Micropterus salmoides) had altered protein abundance associated with 

energy production, lipid oxidation, and protein folding and catabolism after an acute, 96 

hour exposure to a 3 μg/g total body burden exposure[116]. Finally, human MCF-7 breast 

cancer cells exposed to 100 ppb of ATZ for 24 hours had altered abundance of proteins 

involved in oxidative stress, cell morphology, and ubiquitination[117], while exposure to 200 

ppb of ATZ for 24 hpf altered the abundance of membrane proteins[86]. Thus, ATZ seems to 

consistency affect molecular and cellular networks associated with carcinogenesis, protein 

processing, and cellular signaling. Although only 28 proteins were identified as having 

significant LFQ values in our study, this is in line with other zebrafish embryo toxicity 

studies[118] and the total number of detected proteins (1690) in our study is higher than 

2DE [118–121] but equivalent to SDS-PAGE[122] gel methods used in other zebrafish 

embryo studies.

5. Conclusions

The developmental period is characterized by marked plasticity, with dynamic changes in 

the expression of genes important for growth and development. Perturbations during this 

period can disrupt normal gene expression in multiple, compensatory pathways, as an 

organism seeks to maintain homeostatic conditions. We have identified genes, such as 

cyp17a1 that are dynamically expressed during development as well as genes such as ttc3 
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and tpd52l1 that have critical windows before 72 hpf where exposure to ATZ will disrupt 

normal gene expression. Developmental exposure to ATZ has physical outcomes of 

increased brain size and functional changes observed through decreased activity and 

locomotion. Proteomic evaluation at 120 hpf indicates that ATZ alters the abundance of 

proteins associated with organism and organ system development, cellular processes, 

neurodevelopment, and cancer. Our results highlight the utility of pathways analysis in 

evaluating the effects of ATZ exposure and link transcriptional and proteomic alterations to 

physiological outcomes. Changes in these cellular processes may have broad effects that 

could activate compensatory signaling pathways or other processes. Thus, the effects of 

developmental ATZ exposure are broad, time sensitive, and involve the interaction of many 

pathways.
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Significance

This is the first report of proteomic alterations following embryonic exposure to atrazine, 

an environmentally persistent pesticide and common water contaminant. Although the 

transcriptomic alterations in larval zebrafish with embryonic atrazine exposure have been 

reported, neither the time at which gene expression changes occur nor the resulting 

proteomic changes have been investigated. This study seeks to address these knowledge 

gaps by evaluating atrazine’s effect on gene expression through multiple time points 

during embryogenesis, and correlating changes in gene expression to pathological 

alterations in brain length and functional changes in behavior. Finally, pathway analysis 

of the proteomic alterations identifies connections between the molecular changes and 

functional outcomes associated with embryonic atrazine exposure.
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Highlights

• Expression of cyp17a1 is dynamic during embryogenesis

• Atrazine exposure elicits developmental time specific alterations in gene 

expression

• Low level embryonic atrazine exposure is associated with larger brains

• Embryonically exposed larvae are hypoactive during a visual motor response 

test

• The proteome is altered after embryonic atrazine exposure

Horzmann et al. Page 23

J Proteomics. Author manuscript; available in PMC 2019 August 30.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 1: The relative expression of select genes throughout the time course of development.
The relative expression of cyp17a1 was significantly decreased at 24 and 60 hpf compared to 

the expression at 72 hpf (A). The relative expression of glo1 (B), rnf14 (C), sik2 (D), ttc3 
(E), and tpd52l1 (F) was not significantly different from the expression at 72 hpf at any time 

point. n = 6, qPCR run in triplicate, error bars represent standard deviation, * = p < 0.05.
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Figure 2: The time course of ttc3 relative expression after developmental ATZ exposure.
No significant differences in relative expression were observed between treatment groups at 

24 hpf (A), 36 hpf (B), or at 48 hpf (C). At 60 hpf, the 3 ppb treatment had increased relative 

expression as compared to the controls (D). n = 6, qPCR run in triplicate, error bars 

represent standard deviation, * = p < 0.05. (hpf: hours post fertilization)
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Figure 3: The time course of tpd52l1 relative expression after developmental ATZ exposure.
No significant differences in relative expression were observed between treatment groups at 

24 hpf (A). At 36 hpf, the 0.3 and 3 ppb treatment groups had a significant increase in 

relative gene expression compared to the controls (B), but there was no significant 

differences between treatments again at 48 hpf (C). At 60 hpf, the 0.3, 3, and 30 ppb 

treatments all had a significant decrease in relative expression compared to the controls (D). 

n = 6, qPCR run in triplicate, error bars represent standard deviation, * = p < 0.05. (hpf: 

hours post fertilization)
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Figure 4: Brain length in 72 hpf larvae with developmental ATZ exposure.
Representative images of larval zebrafish measured at 72 hpf after developmental exposure 

to ATZ (A). The 0.3 ppb treatment group had a significantly longer brain compared to the 

controls (B). n = 6, 20 subsamples per replicate, error bars represent standard deviation, * = 

p < 0.05.
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Figure 5: Behavioral alterations after developmental ATZ exposure.
A VMR test performed at 120 hpf found that the 30 ppb treatment group had decreased total 

distance moved (A), decreased velocity (B), and spent less time moving (C) than the 

controls. n = 5, 24 subsamples per replicate, error bars represent standard deviation, * = p < 

0.05.
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Figure 6: Genital Cancer Network.
Based on network analysis, 15 out of 21 altered proteins were associated with genital tract 

cancers, prostate cancer, or urogenital cancer in general. Red indicates proteins with 

increased abundance; green indicates proteins with decreased abundance.
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Table 1:

Primers used in qPCR analysis

Seq ID Gene Symbol Primer Sequences
a

Biological Function

NM_212806.3 cyp17a1 gtgtgtttccatacgagaccaa

Steroid biosynthesisatcagcacgtgatcctctgtaa

NM_213151.1 glo1 gcgccatttcatcatatactcc

Formation of s-lactoyl-glutathioneggtcggtcatttttaggtgtgt

NM_001002087.1 rnf14 gtttgcgggatgagtatctttc

Binds to androgen receptor and coactivator of target gene expressionttctgtatattggtgccacagc

ENSDART00000089953 sik2 gaggatgatcatacccacgttt

Regulation of insulin receptor signaling pathwaytgacccatgctgaacagtttac

XM_009305043.1 ttc3 acccctacactgatgaggaaga

Negative regulator of cell differentiationctcaccactgttgttctcgaag

NM_001020734.1 tpd52l1 gctaatatggagcccagacaac

Cell proliferation and calcium signalingactcattctccatttcctctcg

NM_181601 β-actin ctaaaaactggaacggtgaagg

Cell motility, structure, and integrity (Reference gene)aggcaaataagtttcggaacaa

a
Primer sequences for cyp17a1, glo1, sik2, and tpd52l1 originally appeared in Weber et al.(2013)
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Table 2:

List of Altered Proteins

Protein ID Protein Name Gene Symbol Human Ortholog Biological Function ANOVA p-value Fold Change
a

Proteins Altered in 0.3 ppb Exposure Compared to Control Treatment

A0A0R4IML0 Capping protein (actin filament), 
gelsolin-like b

capgb CAPG Barbed-end actin filament 
capping

0.0188 −0.3859

Q568F3 Proteasome subunit beta type (EC 
3.4.25.1)

psmb4 PSMB4 Proteasome core complex 0.0280 0.5755

F1RBR6 Phosphotriesterase-related protein pter PTER Zinc ion binding/catabolic 
process

0.0231 0.5627

Proteins Altered in 3 ppb Exposure Compared to Control Treatment

Q6DHT8 Ferritin zgc:92066 FTMT Cellular iron ion homeostasis/
transp ort

0.0206 0.6707

A0A0A0MPG3 Gamma-crystallin N-B crygn2 -- -- 0.0361 0.6599

A0A140LGU1 Heterochromatin protein 1 
binding protein 3

hp1bp3 HP1BP3 Heterochromatin organization 0.0123 −1.4097

Q7ZVJ0 Profilin pfn2l PFN2 Actin cytoskeleton organization 0.0139 −0.4252

Proteins Altered in 30 ppb Exposure Compared to Control Treatment

F1R6L1 Adducin 3 (gamma) a add3a ADD3 Cytoskeleton 0.0085 0.7959

H0WES8 ATP synthase membrane subunit 
DAPIT

atp5md ATP5MD Mitochondrial proton-
transporting ATP synthase

0.0323 −1.2348

B8JK21 Caspase 3 casp3a CASP3 Execution of apoptosis 0.0320 −0.5241

Q90X19 Creatine kinase; muscle a ckma ckm CKM ATP binding/kinase activity 0.0172 0.3759

Q6P2V1 Cathepsin C ctsc CTSC Cy steine-ty pe peptidase 
activity

0.0083 −0.6671

Q6DHT8 Ferritin zgc:92066 FTMT Cellular iron ion homeostasis/
transp ort

0.0206 0.6662

Q08BL9 Kelch-like family member 24a klhl24a
klhl24
zgc:153342

KLHL24 Protein ubiquitination 0.0240 −0.3795

Q6DHB6 Keratin 17/91 krt17 krt91
zgc:92533

KRT17 Intermediate filament 0.0283 0.9372

E7F5L1 Myosin, heavy chain 7B, cardiac 
muscle, pb

myh7bb MYH7B Myosin complex/ATP binding 0.0118 0.9816

Q6NUY8 Ndufa9 protein ndufa9a
ndufa9

NDUFA9 Resp onse to hy p oxia 0.0418 0.8526

Q7ZVJ0 Profilin pfn2l PFN2 Actin cytoskeleton organization 0.0139 −0.4353

Q6IQL7 Peptidy lprolyl isomerase D ppid PPID Protein folding <0.0001 −0.7583

M5BFV8 Collagen type XXII alpha 1 chain prp col22a1 COL22A1 Extracellular matrix/blood 
vessel morphogenesis

<0.0001 9.3083

Q9PUS1 Proteasome subunit beta type psmb PSMB7 Proteasome core complex 0.0420 −0.7667

U3JB26 Serine/arginine-rich splicing factor 2a srsf2a SRSF2 Nucleic acid/nucleotide binding 0.0456 0.9047

Q6IQD7 Tropomyosin 2 tpm2
zgc:86810

TPM1 striated muscle thin filament 0.0480 −0.3891

a
Log2 transformation
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Table 3:

Top upstream regulators

Name Biological Function p-value of overlap
a

TGFB1 Cell proliferation, differentiation, and other functions 1.06E-04

Peoniforin Stimulates aromatase activity 1.54E-04

GnRH analog Regulates follicle-stimulating hormone and luteinizing hormone release 2.21E-04

L-Dopa Precursor of dopamine 3.10E-04

Prostaglandin J2 Neuroinflammation 3.74E-04

a
Derived from the likelihood of observing the degree of enrichment in a protein set of a given size by chance alone.
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Table 4:

Top enriched diseases and disorders

Name p-value
a

# Molecules
b

Cardiovascular Disease 4.29E-02 – 5.06E-04 7

Organismal Injury and Abnormalities 4.91E-02 – 5.06E-04 17

Cancer 4.91E-02 – 9.11E-04 17

Connective Tissue Disorders 3.50E-02 – 9.11E-04 7

a
Derived from the likelihood of observing the degree of enrichment in a protein set of a given size by chance alone.

b
Classified as being differentially expressed that relate to the specified function category; protein may be present in more than one category.
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Table 5:

Top enriched physiological system development and function pathways

Name p-value
a

# Molecules
b

Cardiovascular System Development and Function 4.37E-02 – 9.11E-04 5

Connective Tissue Development and Function 4.55E-02 – 9.11E-04 5

Embryonic Development 4.98E-02 – 9.11E-04 6

Nervous System Development and Function 4.37E-02 – 9.11E-04 6

a
Derived from the likelihood of observing the degree of enrichment in a protein set of a given size by chance alone.

b
Classified as being differentially expressed that relate to the specified function category; protein may be present in more than one category.
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